

Orion today — year 2017 in figures

Fermion Today

Fully owned subsidiary of Orion Corporation

Develops, manufactures and sells active pharmaceutical ingredients (APIs)

- New chemical entities for Orion's existing and new proprietary products
- Custom development and manufacturing for innovators with focus on high potency APIs
- Generic APIs to pharmaceutical companies worldwide

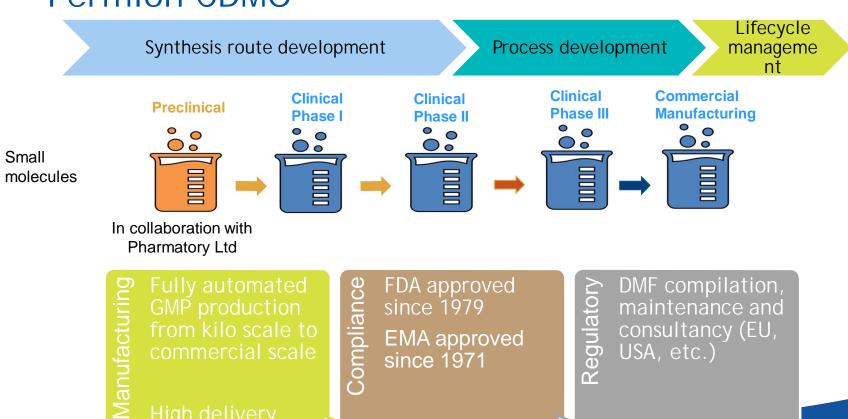
Fermion in 2017

Net sales: EUR 82 million (62 % External, 38 % Captive)

Main markets: USA, EU and Japan, India, Brazil, ca. 100 customers

Ca. 35 products, both innovative and generic APIs

Head office, R&D, bench scale production, regulatory department in Espoo


Two commercial manufacturing sites: Hanko and Oulu

Personnel: ca. 340

Fermion CDMO

Fermion references

Innovative APIs

- 10 NCEs developed and manufactured by Fermion for commercial use
- Several NCEs currently under development in different clinical phases
- Developed for Orion corporation and for external customers

Generics

- 25 generic products
- Main markets USA, EU, Japan and India

Fermion services

Contract Development

- Synthesis development and process engineering
- Analytical development and testing
- Particle engineering
- Scale-up
- Validation
- Lifecycle management

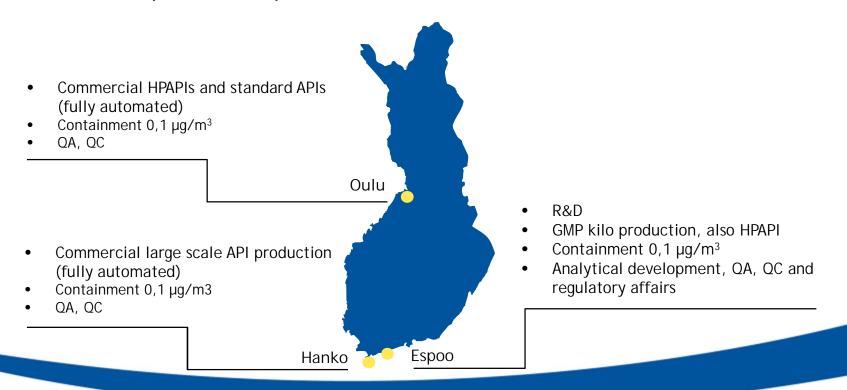
Contract manufacturing

- Production from laboratory scale to commercial scale
- 3 manufacturing sites in Finland
- Total volume of reactors 320 m³
- GMP reactor sizes vary from 10 I to 6300 I
- Annual API capacity >400 metric tons
- High-potency APIs (OEB5) (cytotoxic and non-cytotoxic) from grams to tens of metric tons
- Orion Corporation: Contract manufacturing of finished dosage forms

Regulatory and Compliance

- DMF compilation, maintenance and consultancy services
- Experience in regulatory filings in e.g. USA, Canada, EU DMF/CEP, Japan, Taiwan, China, Brazil, Australia
- FDA approved since 1979 and EMA approved since 1971

Latest inspection history


- FDA inspected and approved since 1979
- In addition several customer audits and internal audits yearly

	Espoo	Hanko	Oulu
FDA	2003 2011	2011 2014 2016 2018	2010 2013 2016 2017
FIMEA (Finland)	2010 2013 2017	2011 2014 2017	2011 2014 2017
PMDA (Japan)		2006*	
MOH (Mexico)			2010
KFDA (South Korea)			2010
ANVISA (Brazil)			2011 2016

^{*} Remote inspections since 2006

Fermion capabilities per location

Batch sizes and containment levels

Containment level µg/m³

Facility	Batch size	10 -	1 - 10	0,1 - 1	
Espoo Laboratory	1 - 100s g	Х	Х	Х	_
Espoo Kilo	0,2 - 5 kg	X	Х	X	
Oulu Pilot	2 - 20 kg	X	Х	X	
Oulu small scale	20 - 100 kg	Х	Х		
Oulu large scale	20 - 500 kg	Х			
Hanko large scale	100 - 1000 kg	Х	Х	Х	
Micronization	0,5 - 60 kg	X	Х	X	
	30 - 1000 kg	X	Х	X	

Automation

Advantages	Overall benefits	Measurable benefits
Less manual labor	Reduced costs	50% reduction in operator labor in the fully automated unit. Company-wide 15-20%.
Consistent quality, increased productivity and yields	Reduced costs, shorter timelines	30% less reprocessing
Fewer emissions, reduced energy consumption, less waste	Regulatory criteria exceeded, positive brand image, minimal impact on the environment	8% reduction in energy consumption in 2014
Access to electronic recipes, batch records and process data	Process optimization leading to decreased costs	Up to 50% decrease in COGS with process optimisation
Increased worker safety		Invaluable

Emission control

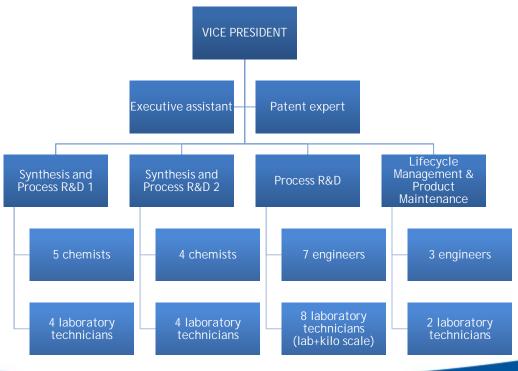
Emissions into air

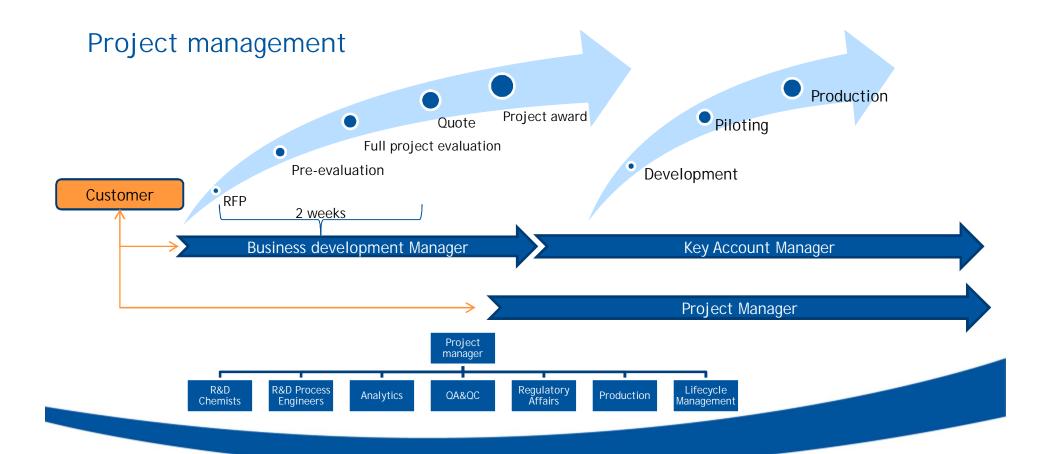
- Exhaust air passed through on-site incinerators or catalytic converters
- •Cryogenic condensation plant in 2016 to Oulu
- International Responsible Care Program and the national Energy Efficiency Program

Waste and waste water treatment ____

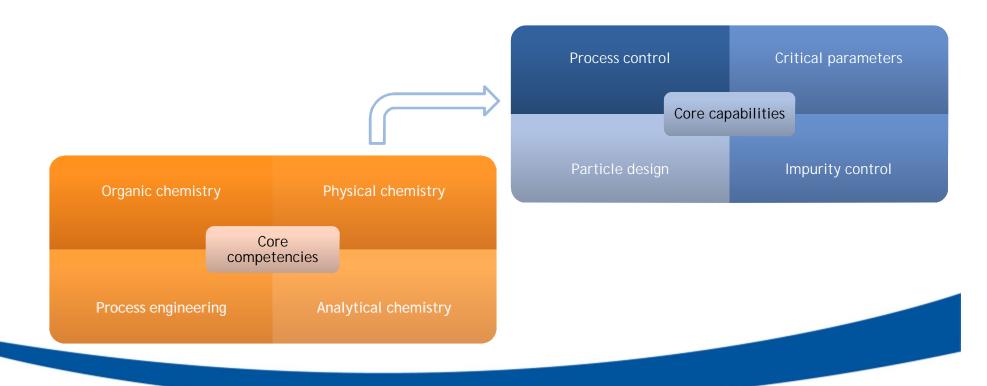
- •All solids, also hazardous waste, recycled or incinerated
- •Waste decreased by 5% in 2015
- •Biological pretreatment of waste waters (Hanko)
- •2017 system to collect and incinerate API and chemical waste waters

Materials and energy efficiency

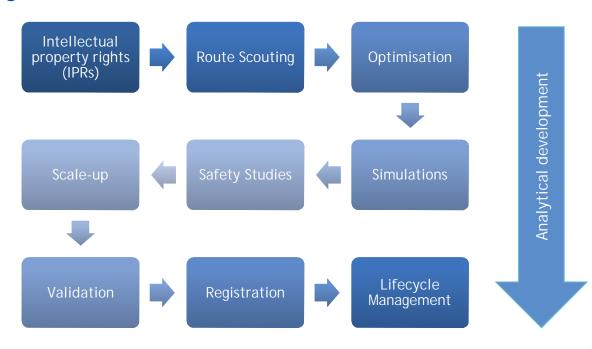

- •Plant heating with energy derived from VOC combustion (Hanko)
- Energy consumption decreased by 5% in 2015
- •Solvent recovery (regenerated solvents 44% of total use in 2015)
- Environmentally friendly raw material and solvent options are used when possible

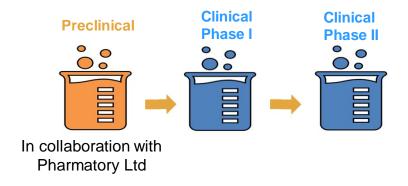


R&D organisation


Kilo GMP facility details

- Unit 1, OEB3 (10-100 μg/m³)
 - 2 x 30 I reactors
 - 1 x 10 l
 - Suitable for small scale GMP manufacturing
- Unit 2, OEB3 (10-100 μg/m³)
 - 2 x 10 l reactors for crystallizations
 - Final API separated by air locks
 - Jet mill for micronizations
 - Frewitt for sievings
 - Pin mill


- Unit 3, OEB5 (0,1 1 μg/m³)
 - Designed like a plant; efficient and reliable scale-up work utilizing a production-type Honeywell data acquisition system
 - Isolator for raw material and API dispensing
 - Filtration isolator
 - Pressure filtrations by cartridges, bags and Nutsche
 - Isolator with integrated tray dryer, conical mill and mixer
 - 3 x glass-lined 30 l reactors with split valve charging
 - 1 x hastelloy 30 I pressure reactor for e.g. hydrogenations (30 bar)


R&D core capabilities

Fully Integrated, Pick What You Need

Early phases in collaboration with Pharmatory Ltd

Collabora	tion experience			
FTE Lab Research	Route Scouting mg - 100 g	100 g - 1 kg	1 kg - 10 kg	>10 kg
6 years continuous agreement	~ 10 projects	~ 20 projects	~ 20 projects	~ 10 projects

www.pharmatory.com

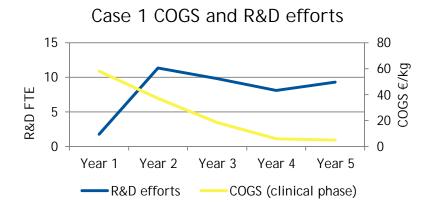
fermion

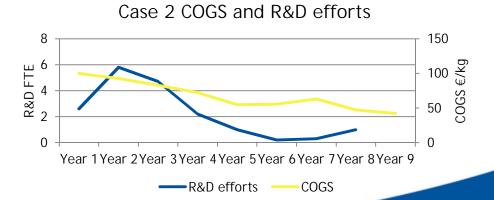
Synthesis route

- Drawing board
- Reaction sequence
- Non-continuous parameters (e.g. choice of solvent or base) considering environmental factors and safety
- Parallel experimentation
 - more data in less time
 - more reliable data
 - find the unexpected

Process development

- Optimise the yield and purity
- Design of experiments (DoE)
 - systematic approach
 - less experiments for same information
- Safety studies and environmental assessment of the process
- Scale-up and scale-down
 - Deeper understanding of the process for transfer to production





Lifecycle management

Constantly evaluating how to improve process costefficiency, EHS aspects and the quality of the product and implementing relevant actions

Particle engineering

Control

Optimal solvent system
Crystallization (cooling profile, seeding, mixing, drying)
Milling (Pin mill & 2 jet mills in g to kg scale)
Physical analytics

DoE Multimax & Labmax ReactIR Lasentec NIR

KnowHow

Solubilities Metastable zone Supersaturation

Target

High quality
High yield
Desired polymorph & particle properties

fermion

Oulu plant structure and capabilities

Modules 1-5

- •OEB III (10 100 µg/m³)
- Non-cytotoxic products
- •Reactor sizes ranging from 250 I to 6300 I (70 m³ reactor space 63m3)

Modules 6 and 7

- Mod 6 OEB IV (1- 10 μg/m³)
- Mod 7 OEB III (10 100 μg/m³)
- Cytotoxic products
- •Reactor sizes: 2 x 63 l (Module 7) and 6 x 1600 l (Module 6) (10 m³ reactor space)

Module 8

- •OEB V $(0,1 1 \mu g/m^3)$
- •Non-cytotoxic products
- •2 x 250 l reactors (0,5 m³ reactor space)

Module 9

- •OEB V
- Cytotoxic products
- •1 x 250 l and 2 x 400 l reactors (1,05 m³ reactor space)
- •Opened in 2013

Module 10

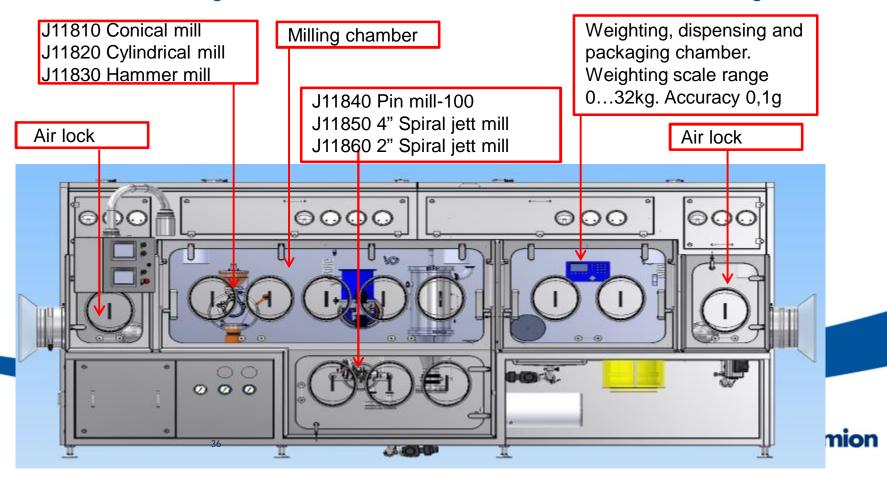
- •OEB V
- Non-cytotoxic products
- •1 x 250 I and 2 x 400 I reactors (1,05 m³ reactor space)
- •Opened in 2015

Oulu Module 9 and 10 reactor charging

- Module 9
 - High potency cytotoxic products
 - 3 reactors
 - Dispensing & reactor charging isolator
- Module 10
 - High potency non-cytotoxic products
 - 3 reactors without the reactor charging isolator

Module 9 (3rd floor) top-down material flow

Module 9 and 10 filter dryer isolators


	Module 9 (cytotoxic)	Module 10 (non-cytotoxic)
Maximum volume	300 I	55 I
Filtering area	0,3 m ²	0,13 m ²
Multilayer filter plates	5 μm or 20 μm	5 μm or 20 μm
Milling	Inline, conical screen mill	Inline, conical screen mill

Module 9 (2nd floor) Filter dryer isolator

Oulu OEB5 milling/micronization module (OEL above 0,1 mcg/m3)

Hanko plant

- 300 metric tons / year
- Fully automated 2-operator API production
- 0,1 -10 µg/m³ containment
- Separate micronization areas (4 micronizers, jet mills)
- On-site incineration and waste water treatment and distillery to recover solvents
- Immuno-suppressants and controlled substances such as class IV-narcotics
- Buss loop 500 I / 80 bar

Hanko plant structure and capabilities

 Manufacturing of intermediates Unit 1 •20 x 1000 - 6300 I reactors (70 m³ reactor space) Several vacuum dryers Manufacturing of intermediates Unit 2 •24 x 2500 - 6300 I reactors (110 m³ reactor space) Several vacuum dryers · Highly automated Manufacturing of final APIs Unit 3 •10 x 6300 I reactors (63 m³ reactor space) Several vacuum dryers •Several mills, e.g. air jet mill · Highly automated Manufacturing of crude/final APIs Unit 4 •12 x 6300 l reactors (76 m³ reactor space) • Several Centrifuges/Vacuum Dryers/Filter Dryers

Hanko plant expansion

2018

100 m³ reactor space (built 76 m³) 6000 m² surface area OEB5 containment level, 25 m³ In use 2018

Hanko Unit 4 has been taken into use 2018

Total of 100,8 m3 reactor capacity

Main department: total 50,4 m3 reactor capacity, OEB4 class

- Reactors 8*6.3 m3, 2 hastelloy C22 + 2 enamel + 2 stainless steel Aisi 316L
- Centrifuges 3, 1 hastelloy c22 + 2 stainless steel Aisi 316L
- Vacuumdryers, 1600 I, hastelloy c22 + stainless steel Aisi 316L
- Filter dryer 1300 I, hastelloy c22
- High containment systems charching liquids (1) and solid materials (2) (OEB 4 and 5)

Two special synthesises modules: total 25,2 m3 reactor capacity, OEB5 class

- Capacity of one module is 12.6 m3, two reactors 6.3 m3, 1 stainless steel Aisi 316 L, 1 enamel
- Filter dryer 1300 I, stainless steel Aisi 316 L
- High containment systems charching liquids (1) and solid materials (1) (OEB 5)

Two special synthesises modules left empty for future extension:

• Total 25,2 m3 reactor capacity

Fermion Key differentiators

Capability to manufacture high potency APIs from gram to multi-ton scale

Regulatory-compliant, fully automated best-in-class facilities

Strong experience and leading talents in crystallization, particle size engineering and impurity control

Dedicated lifecycle management engineers to ensure continuous improvements in cost-efficiency and product quality

High quality, service level, occupational health, safety and sustainanility standards

Fermion is a smart choice

Tap into the capabilities

- •API and HPAPI development and manufacturing at all stages and scales
- •Fully automated API production
- High EHS standards
- Particle engineering

Leverage the benefits

- •One-stop shop shortening time to market
- Security of supply
- Your brand image stays spotless
- Peace of mind

Enjoy the experience

- •Extension of your R&D, thinking like you
- Innovative spirit
- •Problem-solving attitude
- •Transparent communication
- •Agile responses to your needs

fermion

Contact us

Contract Manufacturing Services Teemu Korhonen, Business Development Manager

www.fermion.fi

Follow us

Contract Development and Manufacturing (CDMO), teemu.korhonen@fermion.fi Jyrki Lämsä, Manager, Marketing and Sales (Japan), jyrki.lamsa@fermion.fi

Chemical reactions and technologies 1/2

- Reagents/equipment
 - Dimethyl sulfate
 - Epichlorohydrin
 - Grignard
 - LiAIH4
 - Triphosgene
 - H2-Buss loop reactor
 - Hexamethylenetetramine
 - Phosphorus pentasulfide
 - POCI3, SOCI2
- Technologies
 - Acetylenic chemistry
 - Aldol condensation
 - Alkylations (C, N, O and S)
 - Amidation/amination

- Arylation
- Carbonylation/carboxylation
- Carbamoylation/thiocarbamoylation
- Claisen condensation
- Darzens reaction
- Dehalogenations
- Diazotitation
- Dihydroxylation
- Deprotection
- Friedel-Crafts
- Friedländer condensation
- Epoxidation
- Esterification
- Formylation
- Gabriel/Delépine
- Hydrogenation
- Hydrogenolysis
 - Hydrolysis

- Mannich
- McMurry
- Mitsunobu reaction
- Nitration
- Organometallic reactions (Gringard, Li, etc)
- Oxidation
- Phase-Transfer Catalysis
- Protection
- Polymer coupling
- Reduction
- Reduction by hydride
- Silylation
- Sulfur containing compound (sulfide, sulfoxide etc.)
- Thionation (C=O \rightarrow C=S)
- Wittig

Chemical reactions and technologies 2/2

- Heterocycles
 - 1,4-benzodiazepine
 - 1,5-benzothiazepine
 - Benzothiophene
 - Cromolyn
 - Imidazole
 - Indole
 - Piperazine
 - Pteridine
 - Quinoline/one
 - Purines
 - Camptothecin derivatives
 - SERMS/SARMS
 - Triazoles

- Cross-coupling (Catalytic coupling reaction (Suzuki, Heck, Negishi etc.)
 - Suzuki
 - Sonogashira
 - Heck
 - Negishi
 - C-N/O/S
 - Ullman
 - steriolective C-C bond formation
 - steriolective C-N bond formation

- Chiral chemistry
 - Diastereomeric salt crystallization
 - Asymmetric synthesis
 - Chiral catalysis
 - Enzymatic resolution

Reaction types and technologies not available

- Fermentation
- Azidation
- Cyanation
- Elemental bromine or chlorine
- Fluorination
- Ozonolysis

R&D equipment

Analysis and Identification GC HPLC (15) UPLC (2)

GC-MS

LC-MS

NMR

Parallel synthesis 3 x Carousel 6 and 1 x Carousel 12 Multimax®

Labmax

Endeavor

Crystal 16

Easymax

Cromatography
CombiFlash
Preparative HPLC (CombiFlash EZ
Prep)

Pressure reactors
Four different types
From 50 ml to 3 L
Up to 100 bar
Argonaut for small scale screening

Safety studies

DSC, Differential Scanning Calorimeter Measuring the enthalpies of starting materials, intermediates, products and reaction mixtures

SYSTAG, Reaction Calorimeter

Measuring the amount of energy released
(exothermic) or absorbed (endothermic) by
a chemical reaction

ARC, Accelerating Rate Calorimeter (by contract)
Determining the thermal runaway potential of substances and reaction mixtures

Online monitoring of reactions

NIR, FT Near infrared Analyzer In situ determination of chemical composition and purity of in-process materials and products

React-IR, *In situ* Infrared Spectroscopy *In situ* monitoring of chemical reactions Provides specific information about reaction initiation, conversion, intermediates and endpoint

Lasentec, Inline particle size analysis Tracking changes of particle size distribution, shape and count in real time. Optimizing particle size.

Physical properties

TGA Thermal Gravimetric Analysis	 Weight change of the sample measured by function of temperature Determining if a compound is a hydrate or a solvate or if it contains surface water
SSA Specific Surface Area	•Total surface area of a material per mass
DVS Dynamic Vapor Sorption	 Measurement of gravimetric moisture and organic vapor uptake of solid material.
XRPD X-ray Powder Diffraction	 Investigation of crystal properties; polymorphism, degree of crystallinity, crystalline purity
PSD Particle Size Distribution	•Particle size of a material
SEM Scanning Electron Microscopy	Particle size, shape and surface information

